Formation of Bromohydrins and Epoxides from 4-Hydroxy-2-oxabicyclo[3.3.0]oct-7-en-3-one and 9-Hydroxy-7-oxabicyclo-[4.3.0]non-4-en-8-one

Antonio Garofalo, ${ }^{\boldsymbol{a}}$ Michael B. Hursthouse, ${ }^{\boldsymbol{b}}$ K. M. Abdul Malik, ${ }^{\boldsymbol{b}}$ Horacio F. Olivo, ${ }^{\boldsymbol{a}}$ Stanley M. Roberts ${ }^{a}$ and Vladimir Sik ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Exeter University, Exeter, Devon EX4 4QD, UK
${ }^{\text {b }}$ School of Chemistry and Applied Chemistry, PO Box 912. University of Wales at Cardiff, Cardiff CF1 3TB, UK

The hydroxy lactone 1 and the silylated derivative 8 react selectively with HOBr to give access to polyfunctional bicyclic systems such as the bromo ester 10. The lactone 3 or the corresponding derivative 20 react less selectively to give mixtures of compounds 16, 17, 18, 19, 21, 22. The hydroxybicyclo[4.3.0]nonenones 2 and 4 behave in a similar fashion to the lactone 3, reacting nonselectively with HOBr and m-chloroperbenzoic acid to produce a plethora of highly substituted bicyclo compounds 23-31, 33-39, 41 and 42. X-Ray crystal structures were obtained for four compounds, the diacetates 25 and 37 and the epoxides 26 and 27.

The hydroxy lactone 1 is easy to prepare, ${ }^{1}$ can be resolved by enzyme-catalysed kinetic resolutions, ${ }^{2}$ and has been used in these laboratories ${ }^{3}$ and elsewhere ${ }^{4}$ for the preparation of natural products and selected analogues in homochiral or racemic form. The isomeric compound 3 is also available although it is less easy to prepare (from cyclopentadiene and glyoxylic acid) in substantial quantities. The homologous hydroxy lactones 2 and 4 can be synthesized from cyclohexa1,3 -diene and glyoxylic acid in the prescribed fashion, ${ }^{1}$ and the pure enantiomers of compound 2 have been obtained. ${ }^{5}$

$1 n=1$
$3 n=1$
$2 n=2$
$4 n=2$

The carbocyclic ring of the lactones $1-4$ contains an alkene unit which, ostensibly, has an exposed face and a (more or less) hindered face and it was of interest to us to investigate the selectivity of the attack on the unsaturated lactones $1-4$ by electrophilic reagents.

Results

Treatment of the hydroxy lactone 1 with N-bromoacetamide (NBA) in aq. acetone furnished only the bromohydrin 5 (containing five contiguous chiral centres as shown in Scheme 1). The stereochemical relationships were clearly indicated by NMR data (see Experimental section). ${ }^{6}$ Treatment of the bromohydrin 5 with base afforded the epoxide 6 while hydrodebromination using tributyltin hydride and azoisobutyronitrile (AIBN, cat.) provided the diol 7. Similarly, the tertbutyldimethylsilyl ether 8, derived from compound 1 in 90% yield, gave only the bromohydrin 9 on treatment with NBA in aq. acetone. The bromohydrin 9 was fully characterised as the ester 10.

Hydrodebromination of the bromohydrin 9 gave the alcohol 11 which, in turn, was converted into the diastereoisomeric esters 12 and 13 as described in Scheme 1. Selective hydrolysis
of the acetate unit in compound 13 proved difficult, so access to the corresponding alcohol 14 was better effected via the corresponding, more easily hydrolysed, chloroacetate. The ester 12 was also obtained, albeit in modest yield, on treatment of the silylated compound 8 with mercury(II) acetate, followed by sodium borohydride reduction and a standard acetylation procedure.

Finally in this series, epoxidation of compound 1 with m chloroperbenzoic acid (MCPBA) furnished a mixture of the epoxides 6 and 15 in the ratio $2: 11$ and a total yield of 85%.

In general, the hydroxy lactone 3 was found to react with the electrophilic reagents under investigation less selectively than the epimeric lactone 1 . Thus, reaction of the lactone 3 with NBA in aq. acetone gave a mixture of the bromohydrins 16 and 17 in the ratio $2.5: 1$ (Scheme 2). Treatment of the separated bromohydrins 16 and 17 with potassium acetate in acetone gave the oxiranes 18 and 19, respectively. The epoxides 18 and 19 were formed directly from the alkene 3 in the ratio $3: 1$ on treatment with MCPBA.

The silylated hydroxy lactone 20 reacted with NBA in aq. acetone to give, after acetylation, the bromo esters 21 and 22 in the ratio 2.3:1.

Somewhat surprisingly the corresponding reactions on the lactones 2 and 4 all conformed to the pattern set by the exohydroxy lactone 3 . Thus, the endo-hydroxy lactone 2 reacted nonselectively with NBA in aq. acetone to furnish the bromohydrins 23 and 24 in the ratio $2: 1$ (Scheme 3). Since NMR experiments could not give unequivocal structural assignments, X-ray crystal data on the diacetate 25 (derived from compound 24) were obtained (Fig. 1). Diols 23 and 24 were independently converted into the corresponding epoxides 26 and 27 respectively using base, and X-ray data were obtained for the epoxides 26 and 27 (Figs. 2 and 3). The epoxides 26 and 27 were obtained in the ratio $1: 3.4$ on treatment of the lactone 2 with MCPBA. Treatment of the major compound formed in the latter reaction with hydroiodic acid gave the iodohydrin 28 as the only product. The iodohydrin 28 was further characterised by conversion into the diester 29.

Silylation of the diol 23 gave mono- $\mathbf{3 0}$ and di-protected 31 species depending on the reaction conditions. The alcohol 30 was obtained as the major product when the silylated compound 32 was treated with HOBr under the standard conditions. The isomeric bromohydrin 33 was obtained as the minor product from the latter reaction (ratio $\mathbf{3 0}: 33$ 3.3:1). Treatment

Scheme 1 Reagents and conditions: i, NBA, aq. acetone; ii, AcOK , acetone; iii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, benzene, reflux; iv, TBDMS-Cl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $\mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; vi, $\mathrm{Hg}(\mathrm{OAc})_{2}$, aq. THF; then $\mathrm{NaBH}_{4}, \mathrm{THF},-60^{\circ} \mathrm{C}$; then v; vii, $\mathrm{AcOH}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}, \mathrm{THF} ;$ viii, $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Ph}_{3} \mathrm{P}$, DEAD, THF; ix, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}, \mathrm{NaHCO} 3, \mathrm{EtOH}$, reflux; x, MCPBA, TPB, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 90^{\circ} \mathrm{C}$, sealed tube; then $\mathrm{KF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
of the fully protected material 31 with methoxide ion gave the oxirane $34 .{ }^{7}$
Two bromohydrins 35 and 36 (ratio $2.2: 1$) were formed on reaction of the lactone 4 with hypobromous acid. The bromohydrin 35 was converted into the diacetate 37 [for which X-ray crystal data were obtained (Fig. 4)] and into the epoxides 38, the minor product obtained on peracid oxidation of the parent lactone (Scheme 4). The major product obtained from the latter oxidation was the oxirane 39 (ratio $38: 39$ 1:2.4). Reaction of the silylated compound 40 with HOBr afforded a mixture of the bromohydrins 41 and 42 in the ratio 7:1.

Discussion

In terms of target-orientated synthetic organic chemistry, compound $\mathbf{1}$ is a most attractive starting material. Simple derivation of the alkene unit occurs in a highly selective fashion to provide polyfunctional molecules having discrete and predictable substitution patterns. Compounds 2-4 are going to be less versatile synthons since the alkene unit is obviously much more open to attack from both faces.
Since the compounds 1-4 are fairly flexible, it is difficult to explain the above results by envisaging preferred conformations through which the substances invariably react with electro-
philes. However, it does seem that the endo-hydroxyoxabicyclo[3.3.0]octenone 1 may prefer to react through conformation I, (Fig. 5) with the hydroxy group in a pseudo-equatorial arrangement, distant from the carbocyclic ring, and with the lactone moiety protecting the back-face of the alkene unit. Certainly we have seen no evidence of tricyclic compounds resulting from intramolecular nucleophilic attack by the pendant hydroxy group, ${ }^{6}$ suggesting that the hydroxy group and the alkene unit are not adjacent. In addition there is no pronounced 'Henbest effect' on reaction of the unsaturated lactone 1 with peracid.

The exo-hydroxyoxabicyclo[3.3.0]octenone $\mathbf{3}$ is obviously able to accommodate conformations which lead to minor amounts of 'endo'-bromo compounds and one transition state [II (Fig. 5)] displays an open arrangement which accommodates the hydroxy group in a pseudo-equatorial arrangement. The reaction of compound $\mathbf{3}$ with MCPBA tends to support the concept of an extended conformation since the major product is the endo-epoxide 18, reflecting the preferred approach of the electrophile from the more substituted face of the carbocyclic ring. [It is noteworthy that formation of bromonium ion is reversible so that products are produced from the optimum arrangement of electrophile and attendant nucleophile].

The hydroxyoxabicyclo[4.3.0]nonenones 2 and 4 behave

Scheme 2 Reagents and conditions: i, NBA, aq. acetone; ii, AcOK, acetone; iii, TBDMS-Cl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{MCPBA}, \mathrm{TPB}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, $90^{\circ} \mathrm{C}$, sealed tube: then KF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Fig. 1 X-Ray molecular structure of $\mathbf{2 5}$
very similarly towards peracid and on bromination in hydroxylic solvent; conformations can be drawn (III and IV in Fig. 5) to explain the formation of the bromohydrins via transdiaxial opening of the relevant bromonium ions. The conversion of epoxide 27 into the iodohydrin 28 obviously proceeds through a pathway similar to that described in diagram IV.

Further chemistry on this series of compounds, for example an approach to the natural product brefeldin from compound $\mathbf{1}$, will be reported in due course.

Experimental

Where necessary, solvents were dried and purified according to recommended procedures. Organic solutions were dried over magnesium sulfate, evaporation refers to removal of solvent on a rotary evaporator under reduced pressure. TLC was performed on precoated plates (Merck silica gel 60F 254). Chromatography refers to the method of Still et al. ${ }^{8}$ using Merck Kieselgel, 60/230-400 mesh. Commercial MCPBA was dissolved in dichloromethane and the solution was dried over magnesium sulfate. The material obtained after filtration and subsequent evaporation was assumed to be of $\sim 90 \%$ purity. Acetylation refers to a standard procedure on dissolution of the requisite alcohol in dry pyridine ($10 \mathrm{~cm}^{3}$ mequiv. ${ }^{-1}$) containing acetic anhydride ($4-5 \mathrm{~mol}$ equiv.) and 4 -(dimethylamino)pyridine (cat.). After completion of the reaction (TLC), the volatile materials were evaporated off and the product was purified by chromatography.
M.p.s were measured on a Gallenkamp digital apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer

881 spectrophotometer. NMR spectra were obtained on a Bruker AC 300 or AM 250 spectrometer. Coupling constants are given in Hz . The multiplicity indicated in the ${ }^{13} \mathrm{C}$ NMR spectra was determined by DEPT experiments. Mass determinations were obtained on a Kratos Profile HV-3 apparatus with the Impact Electronic technique, unless otherwise stated. Elemental analyses were performed by Butterworths Laboratories, Middlesex.

8-exo-Bromo-4-endo,7-endo-dihydroxy-2-oxabicyclo[3.3.0]-octan-3-one 5.-NBA ($108 \mathrm{mg}, 0.78 \mathrm{mmol}$) was added in small portions to a solution of 4-endo-hydroxy-2-oxabicyclo-[3.3.0]oct-7-en-3-one $1(100 \mathrm{mg}, 0.71 \mathrm{mmol})$ in acetone (13 cm^{3})-water $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was stirred overnight at room temperature, then was diluted with saturated aq. $\mathrm{NaCl}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(6 \times 5 \mathrm{~cm}^{3}\right)$. The organic layer was washed successively with 10% aq. sodium sulfite $\left(0.5 \mathrm{~cm}^{3}\right)$ and brine. After drying of the solution, the solvent was evaporated off and the resulting residue was chromatographed (ethyl acetate-hexane, $7: 3$) to give the title compound 5 (152 mg , 90%) as a solid, m.p. $174^{\circ} \mathrm{C}$ (from MeOH-EtOAc) (Found: $\mathrm{C}, 35.7 ; \mathrm{H}, 3.7 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 35.47$; $\mathrm{H}, 3.83 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420,3005,2954,1767,1200,1148$ and 1048; $\delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.90(1 \mathrm{H}, \mathrm{d}, J 7.0,4-\mathrm{OH}), 5.44(1 \mathrm{H}$, d, $J 4.5,7-\mathrm{OH}), 4.93(1 \mathrm{H}, \mathrm{dd}, J 6.7$ and $1.5,1-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}, J$ $9.6,4-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $4.5,7-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, $3.16(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $2.1-1.8\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}[62.9 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.8(\mathrm{C}=\mathrm{O}), 86.0(\mathrm{CH}), 78.2(\mathrm{CH}), 67.6(\mathrm{CH}), 57.7$ (CH), $39.8(\mathrm{CH})$ and $30.5\left(\mathrm{CH}_{2}\right) ; m / z 237\left(\mathrm{M}^{+}\right.$, weak), 139 (38%), 95 (51), 83 (59), 67 (100) and 57 (51).

7,8-endo-Epoxy-4-endo-hydroxy-2-oxabicyclo[3.3.0]octan-3one 6.-A mixture of compound $5(237 \mathrm{mg}, 1 \mathrm{mmol})$ and potassium acetate ($118 \mathrm{mg}, 1.2 \mathrm{mmol}$) in acetone $\left(5 \mathrm{~cm}^{3}\right)$ was stirred for 24 h at room temperature under nitrogen. The solvent was evaporated off and the residue thus obtained was chromatographed (ethyl acetate-hexane, 7:3) to afford compound $6\left(134 \mathrm{mg}, 86 \%\right.$) as a solid, m.p. $118-120^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 53.6; H, 4.6. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires C, 53.85; H, 5.16); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3502,1762,1280,1178,1132$ and 1022 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.13(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $1.3,1-\mathrm{H}), 4.10(1$

Scheme 3 Reagents and conditions: i, NBA, aq. acetone; ii, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; iii, AcOK, acetone; iv, But ${ }^{\text {t }} \mathrm{OK}$, THF; v, MCPBA, TPB, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 90^{\circ} \mathrm{C}$, sealed tube; then $\mathrm{KF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, HI , acetone, $0^{\circ} \mathrm{C}$; vii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene, reflux; viii, TBDMS-Cl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ix, $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH

Fig. 2 X-Ray molecular structure of epoxide 26
$\mathrm{H}, \mathrm{dd}, J 12.1$ and $10.1,4-\mathrm{H}), 3.71(2 \mathrm{H}, \mathrm{m}, 7-$ and $8-\mathrm{H}), 3.17(1 \mathrm{H}$, $\mathrm{d}, J 12.1, \mathrm{OH}), 2.94(1 \mathrm{H}$, ddd, $J 10.1,9.5$ and $8.5,5-\mathrm{H}), 2.55(1 \mathrm{H}$, $\mathrm{d}, J 15.4,6-\mathrm{H}_{\text {endo }}$) and $2.09\left(1 \mathrm{H}\right.$, ddd, $J 15.4,9.5$ and $1.1,6-\mathrm{H}_{\text {exo }}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.1(\mathrm{C}=\mathrm{O}), 82.6(\mathrm{CH}), 66.8(\mathrm{CH}), 59.7$ $(\mathrm{CH}), 57.4(\mathrm{CH}), 36.8(\mathrm{CH})$ and $26.0\left(\mathrm{CH}_{2}\right) ; m / z 156\left(\mathrm{M}^{+}, 17 \%\right)$, 111 (9), 97 (11), 81 (94), 66 (100) and 55 (81).

Fig. 3 X-Ray molecular structure of epoxide 27

4-endo,7-endo-Dihydroxy-2-oxabicyclo[3.3.0]octan-3-one 7.-A solution of bromohydrin $5(100 \mathrm{mg}, 0.42 \mathrm{mmol})$, AIBN (cat.) and tributyltin hydride ($245 \mathrm{mg}, 0.84 \mathrm{mmol}$) in dry benzene ($13 \mathrm{~cm}^{3}$) was stirred at reflux under nitrogen for 2 h . The solvent was removed under reduced pressure and the residue was partitioned between acetonitrile ($10 \mathrm{~cm}^{3}$) and

40

41

42

Scheme 4 Reagents and conditions: i, NBA, aq. acetone; ii, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; iii, Bu'OK, THF; iv, MCPBA, TPB, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 90^{\circ} \mathrm{C}$, sealed tube; then KF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, TBDMS-Cl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Fig. 4 X-Ray molecular structure of diacetate 37
hexane $\left(5 \mathrm{~cm}^{3}\right)$. The acetonitrile layer was separated and extracted with hexane ($3 \times 5 \mathrm{~cm}^{3}$). The solvent was removed and the residue was purified by column chromatography (ethyl acetate-hexane, $4: 1$) to give the title compound $7(62 \mathrm{mg}, 93 \%)$ as an oil; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3372,1766,1197,1136,1083,1067$ and $1026 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.58(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and 0.9 , 4$\mathrm{OH}), 4.78(1 \mathrm{H}, \mathrm{t}, J 6.0,1-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $0.9,7-$ $\mathrm{OH}), 4.51(1 \mathrm{H}$, ddd, $J 9.3,6.9$ and $0.9,4-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $2.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $2.12-1.70\left(4 \mathrm{H}, \mathrm{m}, 6-\right.$ and $\left.8-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}[62.9$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 176.5(\mathrm{C}=\mathrm{O}), 81.3(\mathrm{CH}), 71.4(\mathrm{CH}), 68.6$ $(\mathrm{CH}), 41.9(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right)$ and $33.6\left(\mathrm{CH}_{2}\right)$.

4-endo-(tert-Butyldimethylsiloxy)-2-oxabicyclo[3.3.0]oct-7-en-3-one 8.-Imidazole ($2.72 \mathrm{~g}, 40 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride (TBDMS-Cl) $(3 \mathrm{~g}, 20 \mathrm{mmol})$ were added to a solution of compound $1(1.4 \mathrm{~g}, 10 \mathrm{mmol})$ in anhydrous dichloromethane ($30 \mathrm{~cm}^{3}$) under nitrogen. After being stirred at room temperature for 1 h , the reaction mixture was poured onto saturated aq. $\mathrm{NaCl}\left(100 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried and concentrated. Purification of the residue by column chromatography (ethyl acetate-hexane, $1: 1$) yielded compound $8(2.3 \mathrm{~g}$ 90%) as a viscous oil which solidified on storage, m.p. 35$36{ }^{\circ} \mathrm{C}$ (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 255.1410. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ requires $[\mathrm{M}+\mathrm{H}], 255.1416) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3498,2861,1785,1161$, 1147 and $991 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.20(1 \mathrm{H}, \mathrm{dt}, J 5.5$ and 2.2 , $8-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{dt}, J 6.5$ and $2.2,1-\mathrm{H}), 4.64(1$

I

III

II

IV

Fig. 5 Reaction modes for hydroxybromination of compounds 1-4 and silylated derivatives $8,20,32$ and 40

H, d, $J 9.5,4-\mathrm{H}) 3.10$ (1 H , dddd, $J 9.5,9.5,6.5$ and $6.5,5-\mathrm{H}$), $2.80(1 \mathrm{H}$, dddd, $J 18.5,6.5,2.2$ and $2.2,6-\mathrm{H}), 2.38(1 \mathrm{H}$, dddd, $J 18.5,9.5,2.2$ and 2.2, 6-H'), $0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}{ }^{t} \mathrm{Si}\right), 0.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi})$ and $0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.3$ $(\mathrm{C}=\mathrm{O}), 140.2(\mathrm{CH}), 128.0(\mathrm{CH}), 85.2(\mathrm{CH}), 69.9(\mathrm{CH}), 41.2$ $(\mathrm{CH}), 31.3\left(\mathrm{CH}_{2}\right), 25.7\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right)$.

8-exo-Bromo-4-endo-(tert-butyldimethylsiloxy)-7-endo-hy-droxy-2-oxabicyclo[3.3.0]octan-3-one 9.-By use of the procedure described for compound 5 , a mixture of compound 8 (300 $\mathrm{mg}, 1.18 \mathrm{mmol}$), NBA ($193 \mathrm{mg}, 1.40 \mathrm{mmol}$), acetone ($5 \mathrm{~cm}^{3}$) and water ($1 \mathrm{~cm}^{3}$) was stirred for 3 h . After the usual work-up, a residue was obtained, and purified by column chromatography (ethyl acetate-hexane, $1: 7$) to give compound 9 as a solid, m.p.
$90.5-91.5^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) \{Found: [M + $\left.\mathrm{NH}_{4}\right]^{+}$, (CI) 368.0893. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BrO}_{4} \mathrm{Si}$ requires [M $+\mathrm{NH}_{4}$], $368.0893\} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3414,2956,1785,1155,1064$ and $995 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.20(1 \mathrm{H}, \mathrm{dt}, J 6.8$ and $1.0,1-\mathrm{H}), 4.56$ ($1 \mathrm{H}, \mathrm{d}, J 9.9,4-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.28(1$ H , dddd, $J 9.9,9.1,6.8$ and $4.2,5-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.40-$ $2.20\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{S}^{\prime} \mathrm{Si}\right), 0.20(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and 0.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.5(\mathrm{C}=\mathrm{O}), 87.2$ $(\mathrm{CH}), 78.9(\mathrm{CH}), 69.2(\mathrm{CH}), 55.7(\mathrm{CH}), 40.9(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right)$, $25.7\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.6\left(\mathrm{CH}_{3}\right)$ and $-5.3\left(\mathrm{CH}_{3}\right)$.

7-endo-Acetoxy-8-exo-bromo-4-endo-(tert-butyldimethyl-

 siloxy)-2-oxabicyclo[3.3.0]octan-3-one 10.-Compound 10 was obtained in 97% yield starting from compound 9 and by using the standard acetylation procedure. Purification was accomplished by column chromatography (ethyl acetate-hexane, 1:9). M.p. $83^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: $[\mathrm{M}+$ H^{+}, 393.0735. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrO}_{5} \mathrm{Si}$ requires [M + H], 393.0733); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2861,1795,1732,1375,1241,1136$ and 940 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.21(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{d}, J 6.5$, $1-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{d}, J 10.0,4-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.45\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}{ }^{1} \mathrm{Si}\right)$, $0.20(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and $0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 174.2(\mathrm{C}=0), 169.7(\mathrm{C}=\mathrm{O}), 86.0(\mathrm{CH}), 80.2(\mathrm{CH}), 69.0$ $(\mathrm{CH}), 52.3(\mathrm{CH}), 40.6(\mathrm{CH}), 28.3\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 20.7$ $\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right)$.4-endo-(tert-Butyldimethylsiloxy)-7-endo-hydroxy-2-oxabi-cyclo[3.3.0]octan-3-one 11.-By use of a procedure similar to that described for compound 7, a mixture of compound 9 (108 $\mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{Bu}_{3} \mathrm{SnH}(182 \mathrm{mg}, 0.62 \mathrm{mmol})$, AIBN (cat.) and dry benzene ($9 \mathrm{~cm}^{3}$) was refluxed for 1 h . Chromatographic purification (ethyl acetate-hexane, 4:1) gave compound 11 (76 $\mathrm{mg}, 91 \%$) as a waxy solid, m.p. $91-92^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.52$ (ethyl acetatehexane, 4:1); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3459,2933,1780,1167,1007$ and $973 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.80(1 \mathrm{H}, \mathrm{t}, J 6.0,1-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}, J$ $9.8,4-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.21-1.75(5 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{and} 8-\mathrm{H}_{2}, \mathrm{OH}\right), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Si}\right), 0.20(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and $0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.2(\mathrm{C}=\mathrm{O}), 82.2$ $(\mathrm{CH}), 72.8(\mathrm{CH}), 70.2(\mathrm{CH}), 42.6(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right)$, $25.6\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.6\left(\mathrm{CH}_{3}\right)$ and $-5.3\left(\mathrm{CH}_{3}\right)$.

Alternatively, compound 11 was prepared in the following manner; mercury(II) acetate ($0.319 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in water ($1 \mathrm{~cm}^{3}$) and then tetrahydrofuran (THF) $\left(1 \mathrm{~cm}^{3}\right)$ was added. After this mixture had been stirred for 15 min , compound $8(0.254 \mathrm{~g}, 1 \mathrm{mmol})$ was added in one portion and the suspension was stirred for 24 h at room temperature. The solvent was evaporated off and the residual water was azeotropically distilled with toluene. The resulting oil was dissolved in dry THF ($3 \mathrm{~cm}^{3}$) and sodium borohydride (38 mg , $1 \mathrm{mmol})$ was added to the cooled solution $\left(-60^{\circ} \mathrm{C}\right)$ in small portions. After 4 h , glacial acetic acid $\left(0.06 \mathrm{~cm}^{3}\right)$ was added and the solution was stirred for a further 30 min at $-60^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature, then was filtered, and the volatiles were removed under reduced pressure. The residue so obtained was chromatographed to give pure compound 11 ($95 \mathrm{mg}, 35 \%$).

7-endo-Acetoxy-4-endo-(tert-butyldimethylsiloxy)-2-oxabi-cyclo[3.3.0]octan-3-one 12.-Acetylation of compound 11 was carried out by using the standard procedure. Purification by column chromatography (ethyl acetate-hexane, 1:4) gave compound $12(92 \%)$ as a solid, m.p. $84^{\circ} \mathrm{C}$ (from cyclohexane); R_{f} 0.16 (ethyl acetate-hexane, 1:4) (Found: C, 52.9; H, 8.1. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 52.79 ; \mathrm{H}, 8.33 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2960$, 2936, 1771, 1732, 1253, 1071 and $858 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.14$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{t}, J 6.0,1-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 10.0,4-\mathrm{H})$, $3.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.41(1 \mathrm{H}$, ddd, $J 15.1,5.2$ and $2.4,6-\mathrm{H}), 2.30$
($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.05\left(1 \mathrm{H}, \mathrm{t}, J 5.1,8-\mathrm{H}^{\prime}\right), 1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.82(1$ $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}\right), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime} \mathrm{Si}\right), 0.18(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and 0.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.1(\mathrm{C}=\mathrm{O}), 170.6(\mathrm{C}=\mathrm{O})$, $81.5(\mathrm{CH}), 75.5(\mathrm{CO}), 69.6(\mathrm{CH}), 41.9(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right) ; m / z 257\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 11 \%\right), 197(28), 153(100)$, 131 (13), 117 (38), 75 (75), 67 (10) and 57 (30).

7-exo-Acetoxy-4-endo-(tert-Butyldimethylsiloxy)-2-oxabicy-clo[3.3.0]oxtan-3-one 13.-The alcohol 11 ($57 \mathrm{mg}, 0.21 \mathrm{mmol}$), triphenylphosphine ($78 \mathrm{mg}, 0.30 \mathrm{mmol}$) and chloroacetic acid ($28 \mathrm{mg}, 0.30 \mathrm{mmol}$) were dissolved in dry THF ($3 \mathrm{~cm}^{3}$). To this was added dropwise a solution of diethyl azodicarboxylate (DEAD) ($52 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ over a period of 5 min . The solution was stirred at room temperature for 2 h under nitrogen. The solvent was evaporated off under reduced pressure and the residue was taken up in diethyl ether $\left(1 \mathrm{~cm}^{3}\right)$. Any insoluble material was filtered off and the solution was concentrated and chromatographed (ethyl acetate-hexane, 1:4) to give the chloroacetate ester intermediate as a solid $(52 \mathrm{mg}$, 71%), m.p. $49.5-50.5^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.25$ (ethyl acetate-hexane, $1: 4$) (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 349.1228 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{5} \mathrm{Si}$ requires $[\mathrm{M}+$ $\mathrm{H}], 349.1238) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1790$.

4-endo-(tert-Butyldimethylsiloxy)-7-exo-chloroacetoxy-2oxabicyclo[3.3.0] octan-3-one ($35 \mathrm{mg}, 0.1 \mathrm{mmol}$) was treated with thiourea ($11.4 \mathrm{mg}, 0.15 \mathrm{mmol}$) and sodium hydrogen carbonate ($12.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) in ethanol ($10 \mathrm{~cm}^{3}$) at reflux for 2 h . Evaporation of the solvent and subsequent chromatography (ethyl acetate-hexane, $1: 1 ; R_{\mathrm{f}} 0.19$) gave the alcohol 14 ($23 \mathrm{mg}, 87 \%$), which was in turn acetylated by a standard procedure to give the title compound $13(25 \mathrm{mg}, 94 \%)$ as an oil after chromatography (ethyl acetate-hexane, $3: 7 ; R_{\mathrm{f}} 0.31$) (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 315.1636 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}$ Si requires $[\mathrm{M}+\mathrm{H}]$, 315.1628); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2958,2933,1790,1739,1249,1012$ and $839 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.26(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.86(1 \mathrm{H}$, $\mathrm{dt}, J 6.0$ and $2.2,4-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{d}, J 8.2,4-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.36(1 \mathrm{H}$, ddd, $J 16.0,6.0$ and $2.3,8-\mathrm{H}), 2.15(2 \mathrm{H}, \mathrm{m}, 8-$ $\left.\mathrm{H}^{\prime}, 6-\mathrm{H}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.85\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{\mathrm{t}} \mathrm{Si}\right), 0.17$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$) and $0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; CDCl_{3}), $175.0(\mathrm{C}=\mathrm{O}), 170.1(\mathrm{C}=\mathrm{O}), 80.5(\mathrm{CH}), 75.4(\mathrm{CH}), 70.7$ $(\mathrm{CH}), 43.9(\mathrm{CH}), 40.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right)$.

Alternatively, compound 13 was prepared in the following manner: alcohol 11 ($114 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{Ph}_{3} \mathrm{P}(156 \mathrm{mg}, 0.60$ $\mathrm{mmol})$ and glacial acetic acid $\left(0.036 \mathrm{~cm}^{3}, 0.60 \mathrm{mmol}\right)$ were dissolved in dry THF $\left(6 \mathrm{~cm}^{3}\right)$. To this was added dropwise a solution of DEAD ($104 \mathrm{mg}, 0.60 \mathrm{mmol}$) in dry THF ($2 \mathrm{~cm}^{3}$) over a period of 5 min . The solution was stirred at room temperature for 3 h under nitrogen. The solvent was evaporated off and the residue was taken up in diethyl ether ($3 \mathrm{~cm}^{3}$). Any insoluble material was filtered off and the solution was concentrated and chromatographed to give ester 13 (116 mg , 88%) as an oil.

7,8-exo-Epoxy-4-endo-hydroxy-2-oxabicyclo [3.3.0]octan-3one 15.-A tube charged with 4-endo-hydroxy-2-oxabicyclo[3.3.0] oct-7-en-3-one 1 ($100 \mathrm{mg}, 0.71 \mathrm{mmol}$), 90% MCPBA ($191 \mathrm{mg}, 1 \mathrm{mmol}$), bis(5-tert-butyl-4-hydroxy-2-methylphenyl) sulfide ${ }^{9}$ (TPB) (2 mg) and dry 1,2-dichloroethane ($5 \mathrm{~cm}^{3}$) was purged with nitrogen before sealing. The reaction mixture was then heated in an oil-bath at $90^{\circ} \mathrm{C}$ for 1 h . After cooling, the clear solution was evaporated to dryness and the resulting residue was dissolved in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. Activated potassium fluoride ($\left.100^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; 1 \mathrm{~h}\right)(0.6 \mathrm{~g})$ was added and the mixture was kept for 30 min before being filtered (in some cases this treatment was repeated in order to ensure the complete extraction of m-chlorobenzoic acid and unchanged MCPBA). Chromatography of the residue obtained after
evaporation (ethyl acetate-hexane, 3:2 as eluent) gave compound $15(80 \mathrm{mg}, 72 \%)$ as a solid, m.p. $82-83^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 53.7; H, 5.0. $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires C, $53.85 ; \mathrm{H}, 5.16 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370,1780,1404,1170,1134$ and $1000 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.88(1 \mathrm{H}, \mathrm{d}, J 5.3,1-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{d}, J 8.5,4-\mathrm{H})$, $3.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.72(1 \mathrm{H}, \mathrm{d}, J 2.2,8-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$, $2.86(1 \mathrm{H}$, ddd, $J 8.6,7.9$ and $5.3,5-\mathrm{H}), 2.15(1 \mathrm{H}$, dd, $J 15.4$ and 8.6, $6-\mathrm{H}_{\text {exo }}$) and $1.96\left(1 \mathrm{H}\right.$, ddd, $J 15.4,7.9$ and $\left.1.3,6-\mathrm{H}_{\text {endo }}\right)$; $\delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.6(\mathrm{C}=\mathrm{O}), 80.1(\mathrm{CH}), 68.9(\mathrm{CH})$, $58.2(\mathrm{CH}), 56.5(\mathrm{CH}), 39.3(\mathrm{CH})$ and $25.7\left(\mathrm{CH}_{2}\right) ; m / z 157([\mathrm{M}$ $+\mathrm{H}]^{+}, 11 \%$), 111 (71), 94 (45), 81 (91), 66 (62) and 55 (100). Further elution gave 7,8 -endo-epoxy-4-endo-hydroxy-2-oxabicyclo[3.3.0] octan-3-one 6 ($15 \mathrm{mg}, 13 \%$).

8-exo-Bromo-4-exo,7,endo-dihydroxy-2-oxabicyclo [3.3.0]-octan-3-one 16 and 8 -endo-Bromo-4-exo,7-exo-dihydroxy-2-oxabicyclo[3.3.0]octan-3-one 17.-NBA ($118 \mathrm{mg}, 0.85 \mathrm{mmol}$) was added portionwise to a stirred solution of compound 3 (100 $\mathrm{mg}, 0.71 \mathrm{mmol})$ in acetone $\left(5 \mathrm{~cm}^{3}\right)$-water $\left(1 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred overnight at room temperature. After evaporation of the solvent, the residue was chromatographed (ethyl acetate-hexane, 7:3) to yield compound 16 ($105 \mathrm{mg}, 62 \%$) as an oil (Found: [M] ${ }^{+}, 235.9685 . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{BrO}_{4}$ requires [M], 235.9684); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3418,2954,1774,1079,1045$ and 1010; $\delta_{\mathrm{H}}\left[250 \mathrm{MHz}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.15(1 \mathrm{H}$, br s, OH$), 5.60$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.08(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.8,1-\mathrm{H}), 4.19(3 \mathrm{H}, \mathrm{m}$, $4-$, $7-$ and $8-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and 1.83 $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}\right) ; \delta_{\mathrm{C}}\left[62.9 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 176.5(\mathrm{C}=\mathrm{O}), 87.1$ $(\mathrm{CH}), 77.0(\mathrm{CH}), 73.9(\mathrm{CH}), 56.5(\mathrm{CH}), 44.6(\mathrm{CH})$ and 36.2 $\left(\mathrm{CH}_{2}\right)$.
Further elution yielded compound $17(40 \mathrm{mg}, 24 \%)$ as a solid, m.p. $122^{\circ} \mathrm{C}$ (from EtOAc) (Found: [M] ${ }^{+}, 235.9678$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3376,1765,1191,1052$ and $1023 ; \delta_{\mathrm{H}}[250 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.09(1 \mathrm{H}, \mathrm{d}, J 1.2,7-\mathrm{OH}), 5.51(1 \mathrm{H}, \mathrm{d}, J 5.0,4-\mathrm{OH})$, $5.05(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $5.0,4-\mathrm{H}), 4.15(3 \mathrm{H}, \mathrm{m}, 1-, 7-$ and $8-\mathrm{H})$, $2.79(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $1.94\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right) ; \delta_{\mathrm{c}}[62.9 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 176.5(\mathrm{C}=\mathrm{O}), 80.9(\mathrm{CH}), 75.7(\mathrm{CH}), 74.1(\mathrm{CH}), 56.9$ $(\mathrm{CH}), 43.3(\mathrm{CH})$ and $34.9\left(\mathrm{CH}_{2}\right)$.

7,8-endo-Epoxy-4-exo-hydroxy-2-oxabicyclo[3.3.0]octan-3one 18.-A mixture of bromohydrin $16(237 \mathrm{mg}, 1 \mathrm{mmol})$ and potassium acetate ($118 \mathrm{mg}, 1.2 \mathrm{mmol}$) in acetone $\left(5 \mathrm{~cm}^{3}\right)$ was stirred for 24 h at room temperature under nitrogen. The solvent was evaporated off and the residue so obtained was chromatographed (ethyl acetate-hexane, 7:3) to afford the title compound 18 ($78 \mathrm{mg}, 50 \%$) as a solid, m.p. $69-71{ }^{\circ} \mathrm{C}$ (Found: C, $53.4 ; \mathrm{H}, 4.9 . \quad \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires $\mathrm{C}, 53.85 ; \mathrm{H}, 5.16 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3442,1772,1188,1100$ and $1020 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.02(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $1.5,1-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{d}, J 7.7,4-\mathrm{H})$, $3.92(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.65(1 \mathrm{H}, \mathrm{brs}, 7-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.77$ $(1 \mathrm{H}$, ddd, $J 9.9,8.8$ and $7.7,5-\mathrm{H}), 2.34(1 \mathrm{H}$, dd, $J 15.2$ and 0.9 , $6-\mathrm{H}_{\text {endo }}$) and $2.12\left(1 \mathrm{H}\right.$, ddd, $J 15.2,9.9$ and $\left.1.3,6-\mathrm{H}_{\text {exo }}\right)$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 178.2(\mathrm{C}=\mathrm{O}), 81.7(\mathrm{CH}), 73.7(\mathrm{CH}), 59.2$ $(\mathrm{CH}), 56.5(\mathrm{CH}), 42.5(\mathrm{CH})$ and $30.7\left(\mathrm{CH}_{2}\right) ; m / z 157([\mathrm{M}+$ $\mathrm{H}]^{+}$, weak), $149(12 \%), 111(35), 93(23), 83(70), 66$ (100) and 57 (79).

7,8-exo-Epoxy-4-exo-hydroxy-2-oxabicyclo[3.3.0]octan-3one 19.-A mixture of bromohydrin $17(237 \mathrm{mg}, 1 \mathrm{mmol})$ and potassium acetate ($118 \mathrm{mg}, 1.2 \mathrm{mmol}$) in acetone $\left(5 \mathrm{~cm}^{3}\right)$ was stirred for 24 h at room temperature under nitrogen. The solvent was evaporated off and the residue so obtained was chromatographed (ethyl acetate-hexane, 7:3) to afford the title compound $19\left(72 \mathrm{mg}, 46 \%\right.$) as a solid, m.p. $142-144^{\circ} \mathrm{C}$ (from EtOAc-MeOH) (Found: $[\mathrm{M}]^{+}, 156.0420 . \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4}$ requires [M], 156.0422); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3382,1766,1736,1194,1168$ and 1006; $\delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.34(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OH})$, $5.04(1 \mathrm{H}, \mathrm{d} . J 5.4,1-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{d}, J 5.5,4-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{d}, J$
2.4, 8-H), $3.64(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.34(1 \mathrm{H}$, ddd, $J 9.0,5.4$ and 0.9 , $5-\mathrm{H}), 2.30\left(1 \mathrm{H}, \mathrm{dd}, J 18.6\right.$ and $\left.9.0,6-\mathrm{H}_{\text {exo }}\right)$ and $1.52(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{\text {endo }}$); $\delta_{\mathrm{C}}\left[62.9 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.8(\mathrm{C}=\mathrm{O}), 81.7(\mathrm{CH})$, $71.6(\mathrm{CH}), 57.0(\mathrm{CH}), 55.7(\mathrm{CH}), 43.0(\mathrm{CH})$ and $28.9\left(\mathrm{CH}_{2}\right)$.

Compounds 18 and 19 were also obtained by direct epoxidation of 4-exo-hydroxy-2-oxabicyclo[3.3.0]oct-7-en-3one 3 in 64 and 20% yield, respectively, by a procedure identical with that described for compounds 6 and 15.

4-exo-(tert-Butyldimethylsiloxy)-2-oxabicyclo [3.3.0]oct-7-en-3-one 20.-Imidazole ($300 \mathrm{mg}, 4.48 \mathrm{mmol}$) and TBDMS-Cl ($340 \mathrm{mg}, 2.24 \mathrm{mmol}$) were added to a solution of compound 3 ($157 \mathrm{mg}, 1.12 \mathrm{mmol}$) in anhydrous dichloromethane ($3 \mathrm{~cm}^{3}$) under nitrogen. After being stirred at room temperature for 1 h , the reaction mixture was poured onto saturated aq. $\mathrm{NaCl}(10$ cm^{3}) and extracted with dichloromethane ($3 \times 3 \mathrm{~cm}^{3}$), and the combined extracts were dried and concentrated. Purification by column chromatography (ethyl acetate-hexane, 1:9) yielded compound 20 ($253 \mathrm{mg}, 89 \%$) as an oil; $R_{\mathrm{f}} 0.25$ (ethyl acetatehexane, 1:9) (Found: [M] ${ }^{+}, 254.1310 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ requires [M], 254.1338); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2933,2861,1784,1254,1145$ and $992 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.04(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 5.44(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{d}, J 6.5,4-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.42\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}{ }^{i} \mathrm{Si}\right)$, 0.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$) and $0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 175.7(\mathrm{C}=\mathrm{O}), 136.3(\mathrm{CH}), 129.9(\mathrm{CH}), 86.3(\mathrm{CH}), 75.4$ $(\mathrm{CH}), 45.5(\mathrm{CH}), 36.4\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.5$ $\left(\mathrm{CH}_{3}\right)$ and $-5.1\left(\mathrm{CH}_{3}\right)$.

8-exo-Bromo-4-exo-(tert-butyldimethylsiloxy)-7-endo-hy-droxy-2-oxabicyclo[3.3.0]octan-3-one 21 and 8-endo-Bromo-4-exo-(tert-butyldimethylsiloxy)-7-exo-hydroxy-2-oxabicyclo-[3.3.0]octan-2-one 22 .-NBA ($60 \mathrm{mg}, 0.43 \mathrm{mmol}$) was added in portions to a solution of compound $20(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ in acetone ($3 \mathrm{~cm}^{3}$)-water $\left(0.5 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 24 h at room temperature, then was diluted with saturated aq. $\mathrm{NaCl}\left(3 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($3 \times 4 \mathrm{~cm}^{3}$). The organic layer was washed successively with 10% aq. sodium sulfite ($0.5 \mathrm{~cm}^{3}$) and brine. After drying of the mixture, the solvent was evaporated off and the resulting residue was chromatographed (ethyl acetate-hexane, 1:4) to give compound $21(85 \mathrm{mg}, 61 \%)$ as an oil, $R_{\mathrm{f}} 0.20$ (ethyl acetate-hexane, $1: 4$) (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 351.0637 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BrO}_{4} \mathrm{Si}$ requires $[\mathrm{M}+$ H], 351.0627); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3393,2959,1774,1362,1256$, 1099 and $839 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.22(1 \mathrm{H}, \mathrm{d}, J 7.4,4-\mathrm{H})$, $4.68(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 4.43(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{d}, J 2.4,1-\mathrm{H})$, $4.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.62(1 \mathrm{H}$, ddd, $J 14.1$, 10.2 and $\left.4.1,6-\mathrm{H}_{\text {exo }}\right), 1.95\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\text {endo }}\right), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} u^{t} \mathrm{Si}\right)$, 0.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$) and $0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 176.3(\mathrm{C}=\mathrm{O}), 88.8(\mathrm{CH}), 78.6(\mathrm{CH}), 76.3(\mathrm{CH}), 54.5$ $(\mathrm{CH}), 46.7(\mathrm{CH}), 36.4\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.7$ $\left(\mathrm{CH}_{3}\right)$ and - $5.1\left(\mathrm{CH}_{3}\right)$.

Further elution gave the bromohydrin $22(38 \mathrm{mg}, 27 \%)$ as an oil, $R_{\mathrm{f}} 0.10$ (ethyl acetate-hexane, 1:4) (Found: [M] ${ }^{+}$, $350.0556 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BrO}_{4} \mathrm{Si}$ requires [M], 350.0549); $v_{\text {max }}($ neat $)$ / $\mathrm{cm}^{-1} 3417,2932,1781,1465,1256,1110$ and $839 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $5.13(1 \mathrm{H}$, ddd, $J 7.5,4.7$ and $0.5,1-\mathrm{H}), 4.39$ $(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{d}, J 4.0,4-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 4.7, 8-H), $2.94(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.14(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{S}^{\prime}\right), 0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and $0.14(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi})-\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.4(\mathrm{C}=0), 81.6(\mathrm{CH})$, $76.3(\mathrm{CH}), 55.6(\mathrm{CH}), 44.6(\mathrm{CH}), 34.6(\mathrm{CH}), 31.2\left(\mathrm{CH}_{2}\right), 25.6$ $\left(3 \times \mathrm{CH}_{3}\right), 18.1(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.2\left(\mathrm{CH}_{3}\right)$.

5-exo-Bromo-4-endo,9-endo-dihydroxy-7-oxabicyclo[4.3.0] nonan-8-one 23 and 5-endo-Bromo-4-exo,9-endo-dihy-droxy-7-oxabicyclo[4.3.0]nonan-8-one 24.-NBA ($182 \mathrm{mg}, 1.32$ mmol) was added in portions to a solution of 9 -endo-hydroxy-

7-oxabicyclo[4.3.0]non-4-en-8-one 2 ($169 \mathrm{mg}, 1.1 \mathrm{mmol}$) in acetone ($20 \mathrm{~cm}^{3}$)-water ($3 \mathrm{~cm}^{3}$). The mixture was stirred for 18 h at room temperature, then was diluted with saturated aq. $\mathrm{NaCl}\left(25 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($6 \times 5 \mathrm{~cm}^{3}$). The organic layer was washed successively with 10% aq. sodium sulfite $\left(0.5 \mathrm{~cm}^{3}\right)$ and brine. After the mixture had been dried, the solvent was evaporated off and the resulting residue was chromatographed (ethyl acetate-hexane, 7:3) to give compound $23(160 \mathrm{mg}, 58 \%)$ as an oil, $R_{\mathrm{f}} 0.44$ (EtOAc) (Found: C, $38.0 ; \mathrm{H}$, 4.4. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}_{4}$ requires C, $38.40 ; \mathrm{H}, 4.43 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3417, 2945, 1785, 1440, 1327, 1167, 1072 and $963 ; \delta_{\mathrm{H}}[250 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.10-3.70(2 \mathrm{H}, \mathrm{br}, 4-\mathrm{and} 9-\mathrm{OH}), 4.71(1 \mathrm{H}, \mathrm{t}, J 5.8$, $6-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{t}, J 6.1,5-\mathrm{H}), 3.76(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $1.92-1.48\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{C}}\left[62.9 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.9(\mathrm{C}=\mathrm{O}), 79.8(\mathrm{CH}), 70.1(\mathrm{CH})$, $68.7(\mathrm{CH})$, $55.9(\mathrm{CH}), 37.7(\mathrm{CH}), 27.9\left(\mathrm{CH}_{2}\right)$ and $16.3\left(\mathrm{CH}_{2}\right)$; $m / z 251$ ([M] ${ }^{+}$, weak), 153 (17\%), 127 (50), 109 (92), 91 (42), 81 (100), 67 (64) and 55 (76).

Further elution gave bromohydrin $24(83 \mathrm{mg}, 30 \%)$ as a solid, m.p. $187-188^{\circ} \mathrm{C}$ (Found: C, 38.3; H, 4.2%); $\delta_{\mathrm{H}}[250 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.90(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.68(1 \mathrm{H}$, $\mathrm{t}, J 3.2,6-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{d}, J 9-\mathrm{H}), 4.16(1 \mathrm{H}$, dd, $J 10.5$ and 3.2 , $5-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{dt}, J 10.5$ and $4.5,4-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.91$ $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {exo }}\right), 1.70\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {endo }}\right), 1.32\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {exo }}\right)$ and $1.12\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {endo }}\right) ; \delta_{\mathrm{c}}\left[62.9 \mathrm{MHz}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.9(\mathrm{C}=\mathrm{O})$, $78.2(\mathrm{CH}), 71.8(\mathrm{CH}), 69.0(\mathrm{CH}), 57.0(\mathrm{CH}), 41.6(\mathrm{CH}), 32.6$ $\left(\mathrm{CH}_{2}\right)$ and $20.0\left(\mathrm{CH}_{2}\right) ; m / z 251\left(\mathrm{M}^{+}\right.$, weak), $153(42 \%), 125$ (32), 109 (69), 91 (49), 83 (100), 67 (56) and 55 (68).

4-exo-,9-endo-Diacetoxy-5-endo-bromo-7-oxabicyclo-
[4.3.0]nonan-8-one 25.-Compound 25 was obtained starting from compound 24 by using the standard acetylation procedure. Purification was accomplished by column chromatography (ethyl acetate-hexane, 1:1) to give compound 25, as a solid, in 91% yield, m.p. $202-204^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, $42.2 ; \mathrm{H}, 4.3 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{6}$ requires $\mathrm{C}, 43.01 ; \mathrm{H}, 4.51 \%$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3450,2950,1799,1754,1732,1231$ and 1054 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.57(1 \mathrm{H}, \mathrm{d}, J 6.2,9-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{ddd}, J$ $11.0,10.8$ and $4.2,4-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and $3.5,6-\mathrm{H}), 4.06$ $(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $3.5,5-\mathrm{H}$), 2.89 (1 H , dddd, $J 11.7,6.2,6.0$ and $3.6,1-\mathrm{H}), 2.19\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {exo }}\right)$, $2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}$, Me), $1.79\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {exo }}\right)$ and 1.61-1.34 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $\left.3-\mathrm{H}_{\text {endo }}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.1(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O})$, $169.5(\mathrm{C}=0)$, $78.0(\mathrm{CH}), 72.8(\mathrm{CH}), 71.2(\mathrm{CH}), 49.0(\mathrm{CH}), 40.1$ $(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right)$ and $19.7\left(\mathrm{CH}_{2}\right) ; m / z$ $335\left(\mathrm{M}^{+}\right.$, weak), $153(17 \%), 126(14), 109(100), 79(66)$ and 51 (21).

4,5-endo-Epoxy-9-endo-hydroxy-7-oxabicyclo[4.3.0]nonan8 -one 26.-A mixture of compound 23 ($251 \mathrm{mg}, 1 \mathrm{mmol}$) and potassium acetate ($118 \mathrm{mg}, 1.2 \mathrm{mmol}$) in acetone $\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 30 h under nitrogen. The solvent was evaporated off and the residue so obtained was chromatographed (ethyl acetate as eluent) to afford compound 26 ($124 \mathrm{mg}, 73 \%$) as a solid, m.p. $168-169{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.25$ (EtOAc) (Found: C, $56.5 ; \mathrm{H}, 5.9$. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, $56.47 ; \mathrm{H}, 5.92 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3439$, $2928,1764,1211,1162$ and $969 ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.81$ $(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{OH}), 4.81(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $4.0,6-\mathrm{H})$, $4.57(1 \mathrm{H}$, dd, $J 8.1$ and $6.2,9-\mathrm{H}), 3.37(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 2.33(1 \mathrm{H}$, dddd, $J 13.5,8.1,6.0$ and $4.8,1-H), 2.05(1 \mathrm{H}$, dddd, $J 15.0,3.8$, 2.7 and $2.6,3-\mathrm{H}_{\text {endo }}$), $1.68(1 \mathrm{H}$, dddd, $J 15.0,12.8,4.2$ and $0.7,3-$ $\mathrm{H}_{\text {exo }}$), $1.31\left(1 \mathrm{H}\right.$, dddd, $J 13.7,4.8,4.2$ and $\left.2.7,2-\mathrm{H}_{\text {exo }}\right)$ and 1.07 (1 H , dddd, $J 13.7,13.5,12.8$ and $\left.3.8,2-\mathrm{H}_{\text {endo }}\right) ; \delta_{\mathrm{C}}[62.9 \mathrm{MHz}$; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 176.4(\mathrm{C}=\mathrm{O}), 71.8(\mathrm{CH}), 68.5(\mathrm{CH}), 52.1(\mathrm{CH}), 48.4$ $(\mathrm{CH}), 37.4(\mathrm{CH}), 21.8\left(\mathrm{CH}_{2}\right)$ and $13.9\left(\mathrm{CH}_{2}\right) ; m / z 170\left(\mathrm{M}^{+}\right.$, weak), 107 (14\%), 98 (53), 80 (100), 70 (57), 67 (39) and 57 (55).

4,5-exo-Epoxy-9-endo-hydroxy-7-oxabicyclo[4.3.0]nonan-8one 27.-A mixture of compound $24(251 \mathrm{mg}, 1 \mathrm{mmol})$ and
potassium tert-butoxide ($123 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) was stirred for 36 h at room temperature under nitrogen. The solvent was evaporated off and the residue was chromatographed (EtOAc) to give the title compound $27(104 \mathrm{mg}, 61 \%)$ as a solid, m.p. $139^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, $56.1 ; \mathrm{H}, 5.7 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 56.47 ; \mathrm{H}, 5.92 \%$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3412,2930,1770,1256,1213,1181,1141$ and $993 ; \delta_{\mathrm{H}}\left[300 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.95(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{OH}), 4.76(1$ $\mathrm{H}, \mathrm{dd}, J 4.6$ and $1.4,6-\mathrm{H}), 4.59(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and $6.0,9-\mathrm{H}), 3.36$ $(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and $4.1,4-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{dd}, J 4.1$ and $1.4,5-\mathrm{H})$, $2.35(1 \mathrm{H}$, dddd, $J 12.6,6.3,4.6$ and $4.1,1-\mathrm{H}), 2.09(1 \mathrm{H}, \mathrm{m}, 3-$ $\mathrm{H}_{\text {endo }}$), 1.58-1.42 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $3-\mathrm{H}_{\text {exo }}$) and $0.87(1 \mathrm{H}, \mathrm{m}, 2-$ $\left.\mathrm{H}_{\text {endo }}\right) ; \delta_{\mathrm{c}}\left[62.9 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.9(\mathrm{C}=\mathrm{O}), 71.0(\mathrm{CH}), 69.9$ $(\mathrm{CH}), 52.5(\mathrm{CH}), 49.6(\mathrm{CH}), 36.7(\mathrm{CH}), 21.2\left(\mathrm{CH}_{2}\right)$ and 16.1 $\left(\mathrm{CH}_{2}\right) ; m / z 170\left(\mathrm{M}^{+}\right.$, weak), 125 (46\%), 107 (70), 98 (95), 79 (85), 70 (83) and 55 (100).

Compounds 26 and 27 were also prepared by direct epoxidation of 9 -endo-hydroxy-7-oxabicyclo[4.3.0]non-4-en-8one $\mathbf{2}$ in 18 and 61% yield, respectively, by a procedure similar to that described for compounds 6 and 15 , after reaction for 3 h .

5-exo,9-endo-Dihydroxy-4-endo-iodo-7-oxabicyclo[4.3.0]-nonan-8-one 28.-Hydriodic acid (55% solution of hydrogen iodide in water; $0.1 \mathrm{~cm}^{3}, 0.73 \mathrm{mmol}$) was added to a stirred solution of epoxy alcohol $27(95 \mathrm{mg}, 0.56 \mathrm{mmol})$ in acetone $\left(4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min after which time 5% aq. sodium hydrogen carbonate $\left(0.5 \mathrm{~cm}^{3}\right.$) and 10% aq. sodium hydrogen sulfite $\left(0.5 \mathrm{~cm}^{3}\right)$ were added. The solvent was evaporated off and the residual water was azeotroped with toluene. The resulting residue was chromatographed (ethyl acetate-hexane, $3: 2$) to afford the iodohydrin 28 ($120 \mathrm{mg}, 72 \%$) as a solid, m.p. $152^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.20$ (ethyl acetatehexane, 7:3) (Found: [M] ${ }^{+}, 297.9801 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{IO}_{4}$ requires [M], 297.9702); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350,2856,1770,1183,1077$ and 1009; $\delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.12(1 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OH}), 5.89(1$ $\mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OH}), 4.25(3 \mathrm{H}, \mathrm{m}, 5-, 6-\mathrm{and} 9-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $2.63(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.05\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.57\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{C}}\left[62.9 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 176.2(\mathrm{C}=\mathrm{O}), 79.0(\mathrm{CH}), 72.2(\mathrm{CH})$, $70.0(\mathrm{CH}), 37.6(\mathrm{CH}), 32.6(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right)$ and $20.4\left(\mathrm{CH}_{2}\right)$.

5-exo,9-endo-Diacetoxy-7-oxabicyclo[4.3.0]nonan-8-one 29.-A solution of iodohydrin 28 ($55 \mathrm{mg}, 0.18 \mathrm{mmol}$), AIBN (cat.) and tributyltin hydride ($105 \mathrm{mg}, 0.36 \mathrm{mmol}$) in dry benzene ($7 \mathrm{~cm}^{3}$) was stirred at reflux under nitrogen for 90 min . The solvent was removed under reduced pressure and the residue was partitioned between acetonitrile ($7 \mathrm{~cm}^{3}$) and hexane $\left(4 \mathrm{~cm}^{3}\right)$. The acetonitrile layer was separated and extracted with hexane ($3 \times 3 \mathrm{~cm}^{3}$). The solvent was removed and the residue was purified by column chromatography (ethyl acetate-hexane, 4:1) to obtain 5-exo,9-endo-dihydroxy-7-oxabicyclo[4.3.0]-nonan-8-one ($30 \mathrm{mg}, 94 \%$), which was converted into the diacetyl derivative 29 by means of the standard acetylation procedure. Purification was achieved by chromatography (ethyl acetate-hexane, 2:3, $R_{\mathrm{f}} 0.34$) (Found: C, 56.2; H, 6.5. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $\mathrm{C}, 56.25 ; \mathrm{H}, 6.29 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2931,2867,1812$, 1744, 1370, 1247, 1218 and $1028 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.50$ $(1 \mathrm{H}, \mathrm{d}, J 6.7,9-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{t}, J 4.0,6-\mathrm{H})$, $2.87(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.88-1.12\left(6 \mathrm{H}, \mathrm{m}, 2-, 3-\mathrm{and} 4-\mathrm{H}_{2}\right), 2.17(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.5$ $(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=0)$, $169.5(\mathrm{C}=0)$, $74.0(\mathrm{CH}), 72.4(\mathrm{CH}), 67.0$ $(\mathrm{CH}), 36.5(\mathrm{CH}), 25.0\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 20.3$ $\left(\mathrm{CH}_{3}\right)$ and $16.7\left(\mathrm{CH}_{2}\right) ; m / z 256\left(\mathrm{M}^{+}\right.$, weak), $196(17 \%), 140$ (14), 126 (28), 110 (100), 98 (26), 83 (28) and 81 (76).

5-exo-Bromo-9-endo-(tert-butyldimethylsiloxy)-4-endo-hy-droxy-7-oxabicyclo[4.3.0]nonan-8-one 30.-Imidazole (184 mg , $2.70 \mathrm{mmol})$ and TBDMS-Cl ($203 \mathrm{mg}, 1.35 \mathrm{mmol}$) were added to a solution of compound $\mathbf{2 3}(340 \mathrm{mg}, 1.35 \mathrm{mmol})$ in anhydrous
dichloromethane ($15 \mathrm{~cm}^{3}$) under nitrogen. After being stirred at room temperature for 1 h , the reaction mixture was poured onto saturated aq. $\mathrm{NaCl}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($5 \times 10 \mathrm{~cm}^{3}$), and the combined extracts were dried and concentrated. Purification was effected by column chromatography (ethyl acetate-hexane, 3:7) to yield compound 30 ($450 \mathrm{mg}, 91 \%$) as a solid, m.p. $165-166^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.36$ (ethyl acetate-hexane, 3:7) (Found: C, 46.0; H, 7.1. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{BrO}_{4} \mathrm{Si}$ requires $\mathrm{C}, 46.03 ; \mathrm{H}, 6.90 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3443,2931,1780$, $1259,1192,1158$ and $966 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.65(1 \mathrm{H}, \mathrm{t}, J$ $6.0,6-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 6.5,9-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{t}, J 6.2,5-\mathrm{H}), 3.94(1$ $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{m}, \mathrm{l}-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.06(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 1.80\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}\right.$ and $\left.4-\mathrm{H}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime} \mathrm{Si}\right), 0.18$ (3 H , $\mathrm{s}, \mathrm{MeSi}$) and $0.16(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.9$ $(\mathrm{C}=\mathrm{O}), 80.1(\mathrm{CH}), 72.2(\mathrm{CH}), 70.4(\mathrm{CH}), 54.4(\mathrm{CH}), 38.8(\mathrm{CH})$, $27.0\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 16.8(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.2\left(\mathrm{CH}_{3}\right) ; m / z 364\left(\mathrm{M}^{+}\right.$, weak), $227(22 \%), 209(47), 131$ (37), 81 (38), 75 (100) and 57 (29).

5-exo-Bromo-4-endo,9-endo-bis-(tert-butyldimethylsiloxy)-7-oxabicyclo[4.3.0]nonan-8-one 31.-Compound 31 was obtained by following a similar procedure as described for compound $\mathbf{3 0}$ using an excess of TBDMS-Cl (3 mol equiv.) and imidazole (6 mol equiv.). Chromatographic purification (ethyl acetatehexane, $1: 20$) gave compound 31 in 90% yield as a solid, m.p. $71-72{ }^{\circ} \mathrm{C}$ (from hexane); $R_{f} 0.33$ (ethyl acetate-hexane, 1:20) (Found: [M] ${ }^{+}, 478.1590 . \mathrm{C}_{20} \mathrm{H}_{39} \mathrm{BrO}_{4} \mathrm{Si}_{2}$ requires [M], 478.1570); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2933, 2860, 1799, 1156, 1020 and 976; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.59(1 \mathrm{H}, \mathrm{t}, J 3.9,6-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{d}, J$ $6.5,9-\mathrm{H}), 4.22$ ($1 \mathrm{H}, \mathrm{t}, J 3.5,5-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.71$ (1 $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.85-1.45\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $3-$ $\left.\mathrm{H}^{\prime}\right), 0.93$ ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}{ }^{t} \mathrm{Si}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{S}^{t}\right), 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, 0.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), 0.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$) and 0.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.2(\mathrm{C}=0), 77.3(\mathrm{CH}), 72.9(\mathrm{CH}), 70.0$ $(\mathrm{CH}), 49.6(\mathrm{CH}), 37.6(\mathrm{CH}), 25.8\left(\mathrm{CH}_{2}\right), 25.7\left(3 \times \mathrm{CH}_{3}\right), 25.6$ $\left(3 \times \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 17.9(\mathrm{C}), 15.2\left(\mathrm{CH}_{2}\right),-4.7\left(\mathrm{CH}_{3}\right),-4.8$ $\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right)$ and $-5.3\left(\mathrm{CH}_{3}\right)$.
9-endo-(tert-Butyldimethylsiloxy)-7-oxabicyclo[4.3.0]non-4-
en-8-one 32.-Imidazole ($2.72 \mathrm{~g}, 40 \mathrm{mmol}$) and TBDMS- $\mathrm{Cl}(3 \mathrm{~g}$,
$20 \mathrm{mmol})$ were added to a solution of compound $2(1.54 \mathrm{~g}, 10$
mmol) in anhydrous dichloromethane ($30 \mathrm{~cm}^{3}$) under nitrogen.
After being stirred at room temperature for 1 h , the reaction
mixture was poured onto saturated aq. $\mathrm{NaCl}\left(100 \mathrm{~cm}^{3}\right)$ and
extracted with dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$). The combined
extracts were dried and concentrated. Column chromato-
graphic purification (ethyl acetate-hexane, 1:4) yielded com-
pound $32(2.5 \mathrm{~g}, 93 \%)$ as a solid, m.p. $51^{\circ} \mathrm{C}$ (from hexane); R_{f}
0.55 (ethyl acetate-hexane, 1:4) (Found: C, 62.7; H, 9.15.
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}$ Si requires C, $62.64 ; \mathrm{H}, 9.01 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2958$,
2934, 1789, 1254, 1027 and $990 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.20(1 \mathrm{H}$,
$\mathrm{m}, 4-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{d}, J 7.5,9-\mathrm{H}), 4.58(1 \mathrm{H}, \mathrm{m}$,
$6-\mathrm{H}), 2.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.00(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$
and $\left.3-\mathrm{H}^{\prime}\right), 1.24\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\prime}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime} \mathrm{Si}\right), 0.20(3 \mathrm{H}, \mathrm{s}$,
$\mathrm{MeSi})$ and $0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.1$
$(\mathrm{C}=\mathrm{O}), 136.0(\mathrm{CH}), 122.2(\mathrm{CH}), 72.3(\mathrm{CH}), 70.6(\mathrm{CH}), 39.9(\mathrm{CH})$,
$25.7\left(3 \times \mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 18.3(\mathrm{C}), 17.8\left(\mathrm{CH}_{2}\right),-4.6\left(\mathrm{CH}_{3}\right)$
and $-5.4\left(\mathrm{CH}_{3}\right) ; m / z 269\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, weak), $211(19 \%), 167$
(100), 149 (15), 132 (17) and 75 (58).

5-endo-Bromo-9-endo-(tert-butyldimethylsiloxy)-4-exo-hy-droxy-7-oxabicyclo[4.3.0]nonan-8-one 33.-NBA ($207 \mathrm{mg}, 1.5$ mmol) was added in small portions to a solution of compound 32 ($270 \mathrm{mg}, 1 \mathrm{mmol}$) in acetone ($13 \mathrm{~cm}^{3}$-water ($2 \mathrm{~cm}^{3}$). The mixture was stirred for 24 h at room temperature, then was diluted with saturated aq. $\mathrm{NaCl}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The organic layer was washed
successively with 10% aq. sodium sulfite ($0.5 \mathrm{~cm}^{3}$) and brine. After drying of the solution the solvent was evaporated off and the resulting residue was chromatographed (ethyl acetatehexane, 3:7) to give compound $30(215 \mathrm{mg}, 59 \%$). Further elution gave bromohydrin 33 ($66 \mathrm{mg}, 18 \%$) as a solid, m.p. $158-$ $159^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.27$ (ethyl acetate-hexane, 3:7) (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 365.0794. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{BrO}_{4} \mathrm{Si}$ requires [$\mathrm{M}+\mathrm{H}$], 365.0784); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3433,2934,1778,1255,1166$ and $1065 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.63(1 \mathrm{H}, \mathrm{t}, J 3.5,6-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{d}, J 6.2,9-\mathrm{H})$, $3.97(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $3.5,5-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.60(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{OH}), 2.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 1.42\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}^{\prime}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}} \mathrm{Si}\right), 0.19(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi})$ and $0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.0$ $(\mathrm{C}=0)$, $77.5(\mathrm{CH}), 73.8(\mathrm{CH}), 70.0(\mathrm{CH}), 57.7(\mathrm{CH}), 42.7(\mathrm{CH})$, $31.1\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{C}),-4.7\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right)$.

Methyl 2-(tert-Butyldimethylsiloxy)-2-\{5-(tert-butyldimeth-ylsiloxy)-7-oxabicyclo[4.1.0]heptan-2-yl \}acetate 34.-A mixture of compound 31 ($73 \mathrm{mg}, 0.15 \mathrm{mmol}$) and potassium carbonate ($21 \mathrm{mg}, 15 \mathrm{mmol}$) in dry methanol ($3 \mathrm{~cm}^{3}$) was stirred for 24 h at room temperature under nitrogen. The solvent was evaporated off and the residue so obtained was chromatographed (ethyl acetate-hexane, $1: 4$) to afford compound 34 ($43 \mathrm{mg}, 66 \%$) as an oil; $R_{\mathrm{f}} 0.33$ (benzene) (Found: C, $58.2 ; \mathrm{H}$, 9.55. $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{2}$ requires C, $58.56 ; \mathrm{H}, 9.83 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2956, 2934, 1753, 1255, 1154, 1100, 1021 and $838 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 4.26\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CHCO}_{2} \mathrm{Me}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.36(1 \mathrm{H}, \mathrm{t}, J 3.5,1-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{dd}, J$ 3.9 and $2.5,6-\mathrm{H}), 2.19(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.70-1.08(4 \mathrm{H}, \mathrm{m}, 3$ - and $4-$ $\left.\mathrm{H}_{2}\right), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Si}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Si}\right), 0.18(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, 0.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), $0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and 0.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.3(\mathrm{C}=\mathrm{O}), 73.9(\mathrm{CH}), 68.5(\mathrm{CH}), 56.4$ $(\mathrm{CH}), 54.2(\mathrm{CH}), 51.6\left(\mathrm{CH}_{3}\right), 37.4(\mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right), 25.9$ $\left(3 \times \mathrm{CH}_{3}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{C}), 18.1(\mathrm{C})$, $-4.6\left(2 \times \mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$ and $-5.4\left(\mathrm{CH}_{3}\right) ; m / z 430\left(\mathrm{M}^{+}\right.$, weak), $373(26 \%), 281$ (36), 241 (42), 209 (27), 147 (47), $115(36)$, 85 (82), 73 (100) and 59 (55).

5-endo-Bromo-4-exo,9-exo-dihydroxy-7-oxabicyclo[4.3.0]-nonan-8-one 36 and 5-exo-Bromo-4-endo,9-exo-dihydroxy-7-oxabicyclo[4.3.0]nonan-8-one 35.-NBA ($138 \mathrm{mg}, 1 \mathrm{mmol}$) was added portionwise to a solution of 9-exo-hydroxy-7-oxabicy-clo[4.3.0]non-4-en-8-one $4(130 \mathrm{mg}, 0.84 \mathrm{mmol})$ in acetone (15 $\left.\mathrm{cm}^{3}\right)$-water $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 24 h at room temperature, then was diluted with saturated aq. $\mathrm{NaCl}\left(5 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate ($6 \times 5 \mathrm{~cm}^{3}$). The organic layer was washed successively with 10% aq. sodium sulfite $\left(0.5 \mathrm{~cm}^{3}\right)$ and brine. After the solution had been dried, the solvent was removed and the resulting residue was chromatographed ($\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}, 1: 24$) to obtain compound $36(61 \mathrm{mg}, 29 \%)$ as a solid, m.p. 191-193 ${ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.31$ (MeOH-Et ${ }_{2} \mathrm{O}, 1: 24$) (Found: C, $39.0 ; \mathrm{H}, 4.4 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 38.40 ; \mathrm{H}, 4.43 \%$); $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2946,1764,1454,1193,1066$ and $938 ; \delta_{\mathrm{H}}[250$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] .31(1 \mathrm{H}, \mathrm{d}, J 5.0,9-\mathrm{OH}), 5.33(1 \mathrm{H}, \mathrm{d}, J 5.5$, $4-\mathrm{OH}), 4.96(1 \mathrm{H}, \mathrm{t}, J 4.0,6-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.0,5-$ H), 3.95 (1 H , dd, $J 5.0$ and $2.2,9-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.40$ (1 $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.89\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{e x o}\right), 1.75\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {exo }}\right), 1.35(1$ $\mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {end }}$ o and $1.09\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {endo }}\right) ; \delta_{\mathrm{C}}[62.9 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 175.2(\mathrm{C}=\mathrm{O}), 80.6(\mathrm{CH}), 73.2(\mathrm{CH}), 68.5(\mathrm{CH}), 57.2$ $(\mathrm{CH}), 43.1(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right)$ and $21.0\left(\mathrm{CH}_{2}\right) ; m / z 251\left(\mathrm{M}^{+}\right.$, weak), 205 (20%), 167 (36), 149 (43), 125 (48), 109 (86), 95 (64), 83 (100), 67 (64) and 57 (86).

Further elution gave bromohydrin $35(135 \mathrm{mg}, 64 \%)$ as a solid, m.p. $180-181^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.26$ (MeOH-Et ${ }_{2} \mathrm{O}, 1: 24$) (Found: C, $38.8 ; \mathrm{H}, 4.3 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3438,3358,2934,1771,1141$ and $1008 ; \delta_{\mathrm{H}}\left[250 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.22(1 \mathrm{H}$, br s, OH), $4.66(1 \mathrm{H}, \mathrm{t}, J 8.2,6-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{d}, J 12.5,9-\mathrm{H}), 4.05$
($1 \mathrm{H}, \mathrm{t}, J 10.1,5-\mathrm{H}), 3.50(1 \mathrm{H}, \mathrm{dt}, J 10.1$ and $3.5,4-\mathrm{H}), 2.44(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H})$ and $1.90-0.98\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}_{2}\right) ; \delta_{\mathrm{C}}[62.9 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 176.1(\mathrm{C}=\mathrm{O}), 80.7(\mathrm{CH}), 70.5(\mathrm{CH}), 66.3(\mathrm{CH}), 62.2$ $(\mathrm{CH}), 43.6(\mathrm{CH}), 29.1\left(\mathrm{CH}_{2}\right)$ and $19.5\left(\mathrm{CH}_{2}\right) ; m / z 251\left(\mathrm{M}^{+}\right.$, weak), 167 (5%), 149 (16), 109 (24), 83 (100) and 57 (26).

4-endo,9-exo-Diacetoxy-5-exo-bromo-7-oxabicyclo [4.3.0]-nonan-8-one 37.-Compound 37 was obtained in 94% yield, starting from compound 35 by using the standard acetylation procedure. Purification was accomplished by column chromatography (ethyl acetate-hexane, $2: 3$). M.p. $153-155^{\circ} \mathrm{C}$ (Found: C, 42.4; H, 4.4; Br, 24.2. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{6}$ requires C, 43.00; $\mathrm{H}, 4.51 ; \mathrm{Br}, 23.84 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 4582,2949,1812,1747$, 1382,1226 and $1017 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 5.26(1 \mathrm{H}, \mathrm{d}, J 11.7,9-$ H), 4.63 (1 H , ddd, $J 10.7,10.7$ and $4.0,4-\mathrm{H}$), 3.98 (1 H , dd, $J 9.2$ and $7.7,6-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $9.2,5-\mathrm{H}), 1.93(1 \mathrm{H}$, ddddd, $J 11.7,7.7,5.5,2.7$ and $0.7,1-\mathrm{H}), 1.72$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OAc}$), $1.63(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OAc}), 1.53(1 \mathrm{H}$, ddddd, $J 13.5,4.2,4.0,2.7$ and $\left.0.7,3-\mathrm{H}_{\text {exo }}\right), 1.24\left(1 \mathrm{H}\right.$, dddd, $J 14.8,3.8,2.7$ and $\left.2.7,2-\mathrm{H}_{\text {endo }}\right)$, $1.07\left(1 \mathrm{H}\right.$, dddd, J 13.5, 13.1, 10.7 and 3.8, 3- $\mathrm{H}_{\text {endo }}$) and 0.79 (1 H , dddd, $J 14.8,13.1,5.5$ and $\left.4.2,2-\mathrm{H}_{\text {exo }}\right) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ;\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)\right.$ $170.2(\mathrm{C}=\mathrm{O}), 169.2(\mathrm{C}=\mathrm{O}), 168.9(\mathrm{C}=\mathrm{O}), 80.1$ (CH), $71.8(\mathrm{CH})$, $67.4(\mathrm{CH}), 53.3(\mathrm{CH}), 40.8(\mathrm{CH}), 25.6\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{3}\right), 19.6$ $\left(\mathrm{CH}_{3}\right)$ and $19.1\left(\mathrm{CH}_{2}\right) ; m / z 335\left(\mathrm{M}^{+}\right.$, weak), $214(9 \%), 188(18)$, 153 (29), 118 (23), 109 (100) and 83 (98).

Abstract

4,5-endo-Epoxy-9-exo-hydroxy-7-oxabicyclo[4.3.0]nonan-8one 38.-A mixture of compound $35(251 \mathrm{mg}, 1 \mathrm{mmol})$ and potassium tert-butoxide ($123 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry THF ($5 \mathrm{~cm}^{3}$) was stirred for 36 h at room temperature under nitrogen. The solvent was evaporated off and the residue was chromatographed (ethyl acetate-hexane, 4:1) to give the epoxide 38 ($94 \mathrm{mg}, 55 \%$) as an oil, $R_{\mathrm{f}} 0.25$ (ethyl acetate-hexane, $4: 1$) (Found: $[\mathrm{M}+\mathrm{H}]^{+}, 171.0655 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]$, 171.0657); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3423,2865,1779,1121,1087$ and 997; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.2$ and $2.9,6-\mathrm{H}), 4.38$ ($1 \mathrm{H}, \mathrm{d}, J 8.6,9-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.42(1 \mathrm{H}, \mathrm{ddd}, J 4.0,3.6$ and $1.5,4-\mathrm{H}), 3.36(1 \mathrm{H}$, dd, $J 4.0$ and $2.9,5-\mathrm{H}), 2.51(1 \mathrm{H}$, dddd, $J 8.6,8.2,5.7$ and $5.5,1-\mathrm{H})$ and $2.10-1.56\left(4 \mathrm{H}, \mathrm{m}, 2\right.$ - and $3-\mathrm{H}_{2}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 177.7(\mathrm{C}=\mathrm{O}), 75.6(\mathrm{CH}), 69.7(\mathrm{CH}), 54.8$ $(\mathrm{CH}), 51.3(\mathrm{CH}), 39.9(\mathrm{CH}), 19.4\left(\mathrm{CH}_{2}\right)$ and $19.2\left(\mathrm{CH}_{2}\right)$.

4,5-exo-Epoxy-9-exo-hydroxy-7-oxabicyclo[4.3.0]nonan-8one 39.-A mixture of 9-exo-hydroxy-7-oxabicyclo[4.3.0]non4 -en-8-one 4 ($154 \mathrm{mg}, 1 \mathrm{mmol}$), 90% MCPBA ($267 \mathrm{mg}, 1.4$ $\mathrm{mmol})$, TPB (2 mg) and dry 1,2-dichloroethane ($8 \mathrm{~cm}^{3}$) was heated for 2 h at $90^{\circ} \mathrm{C}$ in a sealed tube and then worked-up in the same manner as described for compound 15. The final residue was chromatographed (ethyl acetate-hexane, 4:1) to give epoxide 39 ($95 \mathrm{mg}, 56 \%$) as an oil, $R_{\mathrm{f}} 0.36$ (ethyl acetatehexane, 4:1) (Found: [M] ${ }^{+}, 170.0585 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires [M], 170.0579); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3437,2868,1789,1130$ and 1011 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.69(1 \mathrm{H}, \mathrm{dd}, J 8.6$ and $1.2,6-\mathrm{H}), 4.29(1$ $\mathrm{H}, \mathrm{d}, J 11.0,9-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.10(1 \mathrm{H}, \mathrm{d}, J 3.5,5-\mathrm{H})$, $2.65(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.50(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.10\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $1.63\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right) ; \delta_{\mathrm{H}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 177.7(\mathrm{C}=\mathrm{O}), 71.8$ $(\mathrm{CH}), 66.7(\mathrm{CH}), 52.3(\mathrm{CH}), 50.9(\mathrm{CH}), 37.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{2}\right)$ and $13.8\left(\mathrm{CH}_{2}\right)$.

Further elution gave epoxide $\mathbf{3 8}(\mathbf{4 0 ~ m g}, 23 \%)$.
9-exo-(tert-Butyldimethylsiloxy)-7-oxabicyclo[4.3.0]non-4-en-8-one 40.-Imidazole ($382 \mathrm{mg}, 5.62 \mathrm{mmol}$) and TBDMS-Cl ($433 \mathrm{mg}, 2.87 \mathrm{mmol}$) were added to a solution of compound 4 ($220 \mathrm{mg}, 1.43 \mathrm{mmol}$) in anhydrous dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ and the resulting mixture was stirred for 1 h under nitrogen. After work-up, the residue was purified by chromatography (ethyl acetate-hexane, 1:1) to afford compound 40 (355 mg ,
93%) as an oil (Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 269.1572. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$ requires $[\mathrm{M}+\mathrm{H}], 269.1573$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2935,1789$, $1325,1255,1145$ and $998 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.98(1 \mathrm{H}$, ddt, $J 10.0,3.8$ and $1.1,4-\mathrm{H}), 5.78(1 \mathrm{H}$, ddd, $J 10.0,4.8$ and $2.1,5-$ H), $4.92(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{d}, J 8.1,9-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{m}, 1-$ H), $2.11\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 1.77\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime} \mathrm{Si}\right)$, 0.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$) and $0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 175.4(\mathrm{C}=0), 132.5(\mathrm{CH}), 124.5(\mathrm{CH}), 73.2(\mathrm{CH}), 70.5$ $(\mathrm{CH}), 41.9(\mathrm{CH}), 25.6\left(3 \times \mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{2}\right), 10.1$ (C), $-4.5\left(\mathrm{CH}_{3}\right)$ and $-5.2\left(\mathrm{CH}_{3}\right)$.

5-exo-Bromo-9-exo-(tert-butyldimethylsiloxy)-4-endo-hy-droxy-7-oxabicyclo [4.3.0]nonan-8-one 41 and 5-endo-Bromo-9-exo-(tert-butyldimethylsiloxy)-4-exo-hydroxy-7-oxabicyclo-[4.3.0]nonan-8-one 42.-NBA ($204 \mathrm{mg}, 1.48 \mathrm{mmol}$) was added in portions to a solution of compound $\mathbf{4 0}(305 \mathrm{mg}, 1.14 \mathrm{mmol})$ in acetone $\left(10 \mathrm{~cm}^{3}\right)$-water $\left(2 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred for 24 h , and a usual work-up, a residue was obtained, which was chromatographed (ethyl acetate-hexane, 1:7) to afford bromohydrin $41(320 \mathrm{mg}, 77 \%)$ as a solid, m.p. $129^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ 0.25 (ethyl acetate-hexane, 3:7) (Found: C, 45.65; H, 6.9. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{BrO}_{4} \mathrm{Si}$ requires C, $46.03 ; \mathrm{H}, 6.90 \%$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3443,2935,1778,1253,1151,992$ and $839 ; \delta_{\mathrm{c}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $4.86(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{d}, J 11.5,9-\mathrm{H}), 3.71(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and}$ $5-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.14(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $2.05(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.75\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\prime}\right), 1.52\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}\right), 0.90$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{Si}^{2}\right), 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and $0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.2(\mathrm{C}=\mathrm{O}), 80.3(\mathrm{CH}), 71.7(\mathrm{CH}), 68.4(\mathrm{CH})$, $61.0(\mathrm{CH}), 44.3(\mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right), 25.6\left(3 \times \mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{2}\right)$, $18.2(\mathrm{C}),-4.4\left(\mathrm{CH}_{3}\right)$ and $-5.2\left(\mathrm{CH}_{3}\right) ; m / z 365\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, weak), 309 (13%), 227 (46), 209 (44), 183 (40), 139 (17), 131 (48), 79 (50), 75 (100) and 57 (37).

Further elution afforded bromohydrin $42(47 \mathrm{mg}, 11 \%)$ as a solid, m.p. ${ }^{140-141^{\circ} \mathrm{C} ;} R_{\mathrm{f}} 0.13$ (ethyl acetate-hexane, $3: 7$) (Found: C, 46.2; H, 7.0%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3475,2930,1775$, $1321,1213,1104,1093$ and $937 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.10(1 \mathrm{H}$, $\mathrm{t}, J 3.4,1-\mathrm{H}), 4.05(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 9-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{dt}, J 10.5$ and $3.8,4-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.34(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.15(1 \mathrm{H}, \mathrm{ddd}$, $J 13.5,7.5$ and $3.8,3-\mathrm{H}), 1.82(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.46\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}\right)$, $1.22\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\prime}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}{ }^{i} \mathrm{Si}\right), 0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$ and 0.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $173.6(\mathrm{C}=0)$), 81.1 $(\mathrm{CH}), 75.7(\mathrm{CH}), 69.4(\mathrm{CH}), 57.4(\mathrm{CH}), 45.1(\mathrm{CH}), 31.0\left(\mathrm{CH}_{2}\right)$, $\left.25.6\left(3 \times \mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{2}\right), 18.1(\mathrm{C}),-4.9 \mathrm{CH}_{3}\right)$ and -5.3 $\left(\mathrm{CH}_{3}\right) ; m / z 365\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, weak), $309(43 \%), 281(20), 247$ (26), 209 (20), 183 (27), 131 (52), 109 (44), 91 (37), 81 (78), 75 (100) and 57 (29).

X-Ray Crystallography.-Crystals of compounds 25, 26, 27 and 37 suitable for X-ray work were grown from ethyl acetate. All crystallographic measurements were made at 298 K by using a Delft Instruments FAST TV area detector diffractometer positioned at the window of a rotating anode generator using Mo-K α radiation ($\lambda=0.71069 \AA$) by following procedures described elsewhere. ${ }^{10}$ The structures were solved by direct methods (SHELX-S) ${ }^{11}$ and refined by full-matrix leastsquares (SHELXL-93) ${ }^{12}$ using all unique $F_{0}{ }^{2}$ data corrected for Lorentz and polarisation factors, and absorption effects (DIFFABS). ${ }^{13}$ In all cases, the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were refined freely with individual $U_{\text {iso }}$-values in compounds 26 and 27, but those in compounds 25 and 37 were included in calculated positions with the $U_{\text {iso }}$-values tied to the $U_{\text {eq }}$-values of the parent carbons; in compound 37, an isotropic extinction parameter was also refined [final value $=0.38(2)$]. Sources of scattering factors were as in ref. 12. The crystal data and details of data collection and structure refinement are presented in Table 1. The atomic coordinates, anisotropic displacement parameters of the non-

Table 1 Crystal data and details of data collection and refinement for compounds 25-27 and 37

	25	26	27	37
Formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{6}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{6}$
M	335.15	170.16	170.16	335.15
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
a / A	7.839(4)	10.370(1)	6.818(2)	7.977(1)
b / \AA	18.130(2)	4.8833(8)	7.703(2)	9.477(2)
c / \AA	9.771(1)	15.632(1)	8.128(2)	10.926(1)
$\alpha^{\circ}{ }^{\circ}$	90	90	66.01(1)	112.89(1)
$\beta{ }^{\circ}$	93.10(2)	102.29(1)	84.27(3)	89.37(1)
$\gamma /{ }^{\circ}$	90	90	80.80(1)	112.29(1)
v / \AA^{3}	1386.6(8)	773.4(2)	384.7(2)	695.0(2)
Space group	$2_{1} / n$ (No. 14)	$P 2_{1} / n($ No. 14)	$P-1$ (No. 2)	$P-1$ (No. 2)
Z	4	4	2	2
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	1.605	1.461	1.469	1.602
$F(000)$	680	360	180	340
μ / cm^{-1}	29.8	1.2	1.2	29.8
Crystal size $/ \mathrm{mm}^{3}$	$0.25 \times 0.20 \times 0.12$	$0.35 \times 0.28 \times 0.15$	$0.35 \times 0.20 \times 0.15$	$0.22 \times 0.15 \times 0.08$
θ-range for data/ ${ }^{\circ}$	2.25-25.53	4.33-30.16	2.74-29.80	2.52-29.93
$h_{\min }, h_{\max }$	$-6,8$	-13,7	$-9,6$	-11,9
$k_{\text {min }}, k_{\text {max }}$	$-13,20$	$-6,4$	$-10,10$	$-12,12$
$l_{\text {min }}, l_{\text {max }}$	$-10,10$	-20, 20	$-10,7$	$-15,8$
Total data measured	4564	3741	2050	3676
Total unique ($R_{\text {int }}$)	2196 (0.113)	1928 (0.055)	1771 (0.046)	3171 (0.062)
Absorption correction factors (min, max)	0.753, 1.035	0.810, 1.125	0.898, 1.138	0.882, 1.355
No. of parameters/data	174/2196	149/1928	149/1771	175/3171
$\rho_{\text {min }}, \rho_{\text {max }} / \mathrm{e} \AA^{-3}$	$-0.51,0.66$	-0.16,0.12	-0.13, 0.16	-0.42, 0.28
$R_{1}{ }^{*}{ }^{*}$	$0.104(0.062)^{* *}$	0.066 (0.043	0.060 (0.041)	$0.105(0.055)$
$w R_{2}{ }^{*}$	0.173 (0.138)**	0.128 (0.100)	0.129 (0.099)	0.186 (0.142)

* $R_{1}=\Sigma\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right) / \Sigma\left(\mathrm{F}_{\mathrm{o}}\right) ; w R_{2}=\left[\Sigma\left\{w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right\} / \Sigma\left\{w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right\}\right]^{\frac{1}{2}} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)^{2}\right] .{ }^{* *} R_{1}$ - and $w R_{2}$-values for data with $I>2 \sigma(I)$ are given in parentheses.
hydrogen atoms, and tables of bond lengths and angles have been deposited as supplementary material with the Cambridge Crystallographic Data Centre.*

Acknowledgements

We thank the SERC, the DTI and Chiros Ltd. for a Fellowship (H. F. O.) under the aegis of the Biotransformations LINK Scheme. We acknowledge the help given by Professor Vito Nacci, University of Siena, in facilitating the secondment of A. G. to work in the laboratories at Exeter.

[^0]
References

1 A. Lubineau, J. Auge and N. Lubin, Tetrahedron Lett., 1991, 32, 7529.

2 R. A. MacKeith, R. McCague, H. F. Olivo, C. F. Palmer and S. M. Roberts, J. Chem. Soc., Perkin Trans. I, 1993, 313
3 R. McCague, H. F. Olivo and S. M. Roberts, Tetrahedron Lett., 1993, 34, 3785.

4 P. A. Grieco, K. J. Henry, J. J. Nunes and J. Ematt, J. Chem. Soc., Chem. Commun., 1992, 368.
5 H. F. Olivo, S. M. Roberts, H. Xiong and V. Sik, J. Chem. Soc., Perkin Trans., to be submitted.
6 cf. Z. Grudzinski and S. M. Roberts, J. Chem. Soc., Perkin Trans 1, 1975, 1767; S. M. Ali, C. B. Chapleo and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1979, 126.
7 cf. C. B. Chapleo, M. A. W. Finch, S. M. Roberts, G. T. Woolley, R. F. Newton and D. W. Selby, J. Chem. Soc., Perkin Trans 1, 1980, 1847.

8 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
9 Y. Kishi, M. Aratani, H. Tanino, T. Fukuyama, T. Goto, S. Inoue, S. Sugiura and H. Kakoi, J. Chem. Soc., Chem. Commun., 1972, 64.

10 S. R. Drake, M. B. Hursthouse, K. M. A. Malik and S. A. S. Miller, Inorg. Chem., 1993, 32, 4653.
11 G. M. Sheldrick, SHELX-S Acta Crystallogr., Sect. A, 1990, 46, 467.
12 G. M. Sheldrick, SHELXL-93, University of Gottingen, Germany, 1993.

13 N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158; adapted for FAST geometry by A. Karaulov, University of Wales, Cardiff, 1991.

Paper 3/07310F
Received 10th December 1993 Accepted 13th January 1994

[^0]: * For details of the system, see Instructions for Authors, in the January issue.

